Multiple regulation of ornithine decarboxylase in enzyme-overproducing cells.
نویسندگان
چکیده
We have isolated from mouse FM3A cells a variant cell line, termed EXOD-1, that overproduces ornithine decarboxylase (ODC). The cells were resistant to alpha-difluoromethylornithine, an irreversible inhibitor of the enzyme, and produced the enzyme protein to the extent of approx. 3-6% of total cytosolic protein. The rate of ODC synthesis in this cell line accounted for 25-50% of the rate of total protein synthesis. The amounts of the ODC gene and its mRNA in the variant cells were both about 60 times as much as those in wild-type FM3A cells. Upon removal of the inhibitor, the growth of the ODC-overproducing cells was stimulated approx. 2-fold. Under these conditions, the rate of ODC synthesis increased about 4-fold on day 1 and then decreased to near the original level by day 3. The amount of ODC mRNA increased about 1.7-fold on day 1 and 2.5-fold on day 3. No correlation was observed between changes in ODC synthesis rate and in ODC mRNA content, suggesting a translational repression of ODC mRNA due to accumulation of polyamines. In fact, the cellular contents of putrescine and spermidine markedly increased and that of spermine inversely decreased during the same period. Pulse-chase experiments showed that the accumulation of putrescine and spermidine also elicited a rapid degradation of ODC. Excess amounts of newly synthesized putrescine and cadaverine were excreted into the medium, whereas spermidine, spermine and acetylated polyamines were undetectable there. We conclude that ODC regulation upon removal of the inhibitor is dependent on at least three steps, namely the level of mRNA, the translational efficiency of mRNA and the stability of the enzyme, the last two of which are involved in cellular polyamines.
منابع مشابه
Stereo-Specific Transcript Regulation of the Polyamine Biosynthesis Genes by Enantiomers of Ornithine in Tobacco Cell Culture
Background: Ornithine (Orn) plays an essential role in the metabolism of plant cells through incorporation in polyamines biosynthesis, the urea cycle and nitrogen metabolism. Physiological response of the plant cells to its two enantiomers have not been widely investigated yet.Objectives: This study aimed to evaluate effect of ornithine enantiomers on exp...
متن کاملPhosphorylation of ornithine decarboxylase at both serine and threonine residues in the ODC-overproducing, Abelson virus-transformed RAW264 cell line.
Expression of ornithine decarboxylase (ODC), the initial enzyme is polyamine biosynthesis, is essential for cell growth. The Abelson virus-transformed, murine macrophage-derived RAW264 cell line, overexpresses ODC activity and enzyme protein at a level 100-1000-fold greater than in normal cells. Expression of ODC was completely dependent on extracellular stimulants and followed a temporally dis...
متن کاملAntizyme, a protein induced by polyamines, accelerates the degradation of ornithine decarboxylase in Chinese-hamster ovary-cell extracts.
Ornithine decarboxylase (ODC), the key regulatory enzyme for polyamine biosynthesis, is known to have a short intracellular half-life, and antizyme, an ODC-binding protein induced by polyamines, has been suggested to be involved in the process of ODC degradation. In the present study we demonstrated that antizyme markedly accelerated ATP-dependent degradation of ODC in vitro in an extract from ...
متن کاملPutrescine activates oxidative stress dependent apoptotic death in ornithine decarboxylase overproducing mouse myeloma cells.
Accumulation of putrescine in ornithine decarboxylase overproducing cells provokes apoptotic death that is inhibited by 2-difluoromethylornithine, a specific inhibitor of ODC. The apoptotic process provoked by putrescine involves the release of cytochrome c from the mitochondria and activation of caspases cascades demonstrated by the cleavage of caspase-2, polyA-ribose polymerase (PARP), and pr...
متن کاملDistinct roles of putrescine and spermidine in the regulation of ornithine decarboxylase in Neurospora crassa.
We wished to identify metabolic signals governing changes in ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) activity in Neurospora crassa. By manipulations of the ornithine supply and by the use of inhibitors of the polyamine pathway, we found that spermidine negatively governs formation of active ornithine decarboxylase and that putrescine promotes inactivation of the enzyme....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 289 ( Pt 2) شماره
صفحات -
تاریخ انتشار 1993